当前位置:首页 > 财经 > 正文内容

韩信点兵多多益善的故事较短(韩信点兵多多益善的故事)

2023-04-29 15:40:10财经732

关于韩信点兵多多益善的故事较短,韩信点兵多多益善的故事这个很多人还不知道,今天就让小编猫猫来为大家解答以上的问题,现在让我们一起来看看吧!

1、刘邦问他:“你觉得我可以带兵多少?”韩信:“最多十万。

韩信点兵多多益善的故事较短(韩信点兵多多益善的故事)

2、”刘邦不解的问:“那你呢?”韩信自豪地说:“越多越好,多多益善嘛!刘邦半开玩笑半认真的说:“那我不是打不过你?”韩信说:“不,主公是驾驭将军的人才,不是驾驭士兵的,而将士们是专门训练士兵的。

3、”[1]中文名韩信点兵外文名Han Xin--The more ,the better...涉及人物刘邦、韩信传说来源江苏淮安相关成语韩信点兵,多多益善成语故事淮安民间传说着一则故事——“韩信点兵”,其次有成语“韩信点兵,多多益善”。

4、韩信带1500名兵士打仗,战死四五百人,站3人一排,多出2人;站5人一排,多出4人;站7人一排,多出6人。

5、韩信很快说出人数:1049。

6、算术题目在一千多年前的《孙子算经》中,有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数。

7、这样的问题,也有人称为“韩信点兵”。

8、它形成了一类问题,也就是初等数论中的解同余式。

9、①有一个数,除以3余2,除以4余1,问这个数除以12余几?解:除以3余2的数有:2,5,8,11,14,17,20,23……它们除以12的余数是:2,5,8,11,2,5,8,11……除以4余1的数有:1,5,9,13,17,21,25,29……它们除以12的余数是:1,5,9,1,5,9……一个数除以12的余数是唯一的.上面两行余数中,只有5是共同的,因此这个数除以12的余数是5。

10、如果我们把①的问题改变一下,不求被12除的余数,而是求这个数。

11、很明显,满足条件的数是很多的,它是5+12×整数,整数可以取0,1,2,……,无穷无尽。

12、事实上,我们首先找出5后,注意到12是3与4的最小公倍数,再加上12的整数倍,就都是满足条件的数.这样就是把“除以3余2,除以4余1”两个条件合并成“除以12余5”一个条件。

13、《孙子算经》提出的问题有三个条件,我们可以先把两个条件合并成一个.然后再与第三个条件合并,就可找到答案。

14、②一个数除以3余2,除以5余3,除以7余2,求符合条件的最小数。

15、解:先列出除以3余2的数:2,5,8,11,14,17,20,23,26……再列出除以5余3。

本文到此分享完毕,希望能帮助到大家。

扫描二维码推送至手机访问。

版权声明:文章内容摘自网络,如果无意之中侵犯了您的版权,请联系本站,本站将在3个工作日内删除。谢谢!

本文链接:https://www.xixia168.com/n/cj/325765.html

分享给朋友:

“韩信点兵多多益善的故事较短(韩信点兵多多益善的故事)” 的相关文章

中药灯心草图片(中药灯心草图片主治功效与作用)

中药灯心草图片(中药灯心草图片主治功效与作用)

大家好,今天蜜蜜小编来讲讲一篇关于膜耳灯心草,关于膜耳灯心草部分内容简述的文章,那么现在就为大家来简单介绍下,希望能帮助到各位小伙伴们。 1、 膜耳灯心草(学名:Juncus membranaceus)是灯心草科灯心草属的植物。分布在喜马拉雅山区以及中国大陆的云南、西藏等地,生长于海拔3,000米...

纤维性强直常见于什么病(关节纤维性强直常见于)

纤维性强直常见于什么病(关节纤维性强直常见于)

大家好,今天吖吖小编来讲讲一篇关于膝关节纤维性强直,关于膝关节纤维性强直部分内容简述的文章,那么现在就为大家来简单介绍下,希望能帮助到各位小伙伴们。 1、 膝关节纤维性强直(fibrous ankylosis of the knee joint)是2019年公布的运动医学名词。文章到此就分享结束,...

荆门活性膨润土(荆门膨润土矿)

荆门活性膨润土(荆门膨润土矿)

大家好,今天小熊小编来讲讲一篇关于膨润土活性度试验方法,关于膨润土活性度试验方法部分内容简述的文章,那么现在就为大家来简单介绍下,希望能帮助到各位小伙伴们。 1、 《膨润土活性度试验方法》是2012年07月01日实施的一项行业标准。 文章到此就分享结束,希望能帮助到大家。...

吸水膨胀原理(种子吸水膨胀原理)

吸水膨胀原理(种子吸水膨胀原理)

大家好,今天小鱼小编来讲讲一篇关于膨胀原理,关于膨胀原理部分内容简述的文章,那么现在就为大家来简单介绍下,希望能帮助到各位小伙伴们。 1、 膨胀原理是指在欧氏几何学中,将一个命题中的某些点换成圆,将这些点中某两点的连线换成两圆的公切线,将两点间的距离换成两圆的公切线(或连心线)的长,将另一点和这些...

膨胀土化学改良方法(为什么可以用生石灰改良膨胀土?)

膨胀土化学改良方法(为什么可以用生石灰改良膨胀土?)

大家好,今天猫猫小编来讲讲一篇关于膨胀土的改良技术与工程应用,关于膨胀土的改良技术与工程应用部分内容简述的文章,那么现在就为大家来简单介绍下,希望能帮助到各位小伙伴们。 1、 《膨胀土的改良技术与工程应用》是2008年科学出版社出版的图书,作者是王保田,张福海。文章到此就分享结束,希望能帮助到大家...

膳(膳露)

膳(膳露)

大家好,今天丹尼小编来讲讲一篇关于膳,关于膳部分内容简述的文章,那么现在就为大家来简单介绍下,希望能帮助到各位小伙伴们。 1、 膳,汉语二级字, 读作膳(shàn),⒈ 饭食:膳食。用膳。膳宿。⒉ 进食:“宰夫膳稻于梁西”。 文章到此就分享结束,希望能帮助到大家。...