当前位置:首页 > 历史 > 正文内容

度量空间

2025-10-03 09:55:10历史371

[外文]:metric space

现代数学中一种基本的、重要的、最接近于欧几里得空间的抽象空间。19世纪末叶,德国数学家G.康托尔创立了 论,为各种抽象空间的建立奠定了基础。20世纪初期,法国数学家M.-R.弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念。具体说来,如果X是一 ,d是定义在X×X上的非负实值函数,使得对任何x,y,z∈X有:

度量空间

(1)d(x,y)=0的充要条件是x=y;

(2)d(x,y)=d(y,x);

(3)d(x,z)≤d(x,y)+d(y,z)。这时便称X是一个度量空间,d(x,y)称为x与y之间的距离。

下面是几个度量空间的例子。

欧氏空间Rn

由所有的 n元实数组(x1,x2,…,xn)构成 Rn,Rn中元素x=(x1,x2,…,xn)与y=(y1,y2,…,yn)之间的距离定义为。

希尔伯特空间H

其中R表示实数 。定义元素x=(x1x2,…,xn,…)及y=(y1,y2,…,yn…)之间的距离为。

贝尔空间B

B={(x1,x2,…,xn,…)│(xn∈R,n=1,2,…)}对于两个不同的元素x=(x1,x2,…,xn,…)及y=(y1,y2,…,yn,…),用m(x,y)表示满足 xn≠yn的小标号n,定义x与y之间的距离为 ;再规定d(x,x)=0(x∈B)。一般假设Ω是任意一个 ,取X={(x1,x2,…xn,…)|xn∈Ω),可以按同样的方法定义m(x,y)与d(x,y),得到的度量空间也称作贝尔空间。

函数空间

处理分析问题时,根据具体情况需要可以引入种种函数空间。例如,考虑定义于闭区间[0,1]上的一切连续实值函数的 ,就可以定义两个函数ƒ 和g的距离为

对于度量空间X,可以利用它的度量d 引进一个拓扑结构,其基的元就是所有的开球B(x,r)={y∈x|d(x,y)完备度量空间

在度量空间中可以用距离定义点列的收敛概念:xn→x0就是指d(xn,x0)。点列{xn}称为柯西点列,是指对任意正实数ε,都存在自然数N,使得m、n≥N时有。可以证明收敛点列一定是柯西点列,反过来并不成立。每个柯西点列都收敛的度量空间叫做完备度量空间。这类空间有许多好的性质。例如,完备度量空间中压缩映射原理成立。可以用它证明微分方程、积分方程以及无限线性代数方程组的一系列存在惟一性定理。度量空间X的任何子集Y配上原有的距离也成为度量空间,称作X的子空间。如果每个开球{x∈X|d(x0,x)完备化定理

每一度量空间X 都是另一完备度量空间X的稠密子空间,而且X由X惟一构造出来。例如,实数直线就是有理数集的完备化,20世纪初建立严密的数学分析理论正是基于这一重要事实。

可以证明:在完备度量空间中可数多个稠密开子集的交仍是稠密集。

可度量化拓扑空间

度量空间具有许多良好性质,例如,它满足第一可数公理,它是豪斯多夫空间,正规空间,还是仿紧空间。此外对度量空间而言,紧致性等价于下列三条中的任一条:

(1)任何可数开覆盖都有有限子覆盖;

(2)每一无限子集都在空间中有聚点:③每一点列都有收敛子列。紧度量空间一定满足第二可数公理从而必是可分的。实际上对于度量空间而言,可分性与第二可数公理等价。因此,一个拓扑空间的拓扑结构在什么条件下能作为一个度量空间的拓扑?这是拓扑空间理论的重要问题,称作度量化问题。50年代長田潤一。ю.М.斯米尔诺夫以及R.H.宾得到了可度量化问题的重要结果。例如,拓扑空间可度量化的充要条件是:它是T1正则空间,且具有一个基,其中每个Bn都是局部有限的开集族。

扫描二维码推送至手机访问。

版权声明:文章内容摘自网络,如果无意之中侵犯了您的版权,请联系本站,本站将在3个工作日内删除。谢谢!

本文链接:https://www.xixia168.com/n/ls/331816.html

标签: 度量空间
分享给朋友:
返回列表

上一篇:磁致伸缩

下一篇:皮托管

“度量空间” 的相关文章

膝关节内侧软组织肿胀(左膝关节周围软组织肿胀)

膝关节内侧软组织肿胀(左膝关节周围软组织肿胀)

大家好,今天小鸥小编来讲讲一篇关于膝关节内侧肿胀青紫,局部剧痛,关于膝关节内侧肿胀青紫,局部剧痛部分内容简述的文章,那么现在就为大家来简单介绍下,希望能帮助到各位小伙伴们。 1、 在多数有膝关节遭受突然外翻或旋转外力的外伤史,韧带断裂后,一般地膝关节内侧显著肿胀,局部发生剧痛,皮下淤血,青紫。文章...

膝龙什么样子(龙什么样子的图片)

膝龙什么样子(龙什么样子的图片)

大家好,今天蜜蜜小编来讲讲一篇关于膝龙,关于膝龙部分内容简述的文章,那么现在就为大家来简单介绍下,希望能帮助到各位小伙伴们。 1、 膝龙(学名Genusaurus)意为“膝盖蜥蜴”,是下白垩纪的一属恐龙。它是属于角鼻龙下目,并可能是食肉牛龙的远亲。它的化石在法国被发现。膝龙的生存年代约是阿普第阶,...

膳食回顾法(膳食回顾法调查表)

膳食回顾法(膳食回顾法调查表)

大家好,今天小花小编来讲讲一篇关于膳食回顾,关于膳食回顾部分内容简述的文章,那么现在就为大家来简单介绍下,希望能帮助到各位小伙伴们。 1、 24 h 膳食回顾是了解近期饮食情况最常用的一种方法,它省时省力,可操作性强,且不干扰被调查者的日常膳食,但其对食物量的估计完全依赖于被调查者的记忆及表达,必...

臞翁诗集(彼得豆翁诗集)

臞翁诗集(彼得豆翁诗集)

大家好,今天小白小编来讲讲一篇关于臞翁诗集,关于臞翁诗集部分内容简述的文章,那么现在就为大家来简单介绍下,希望能帮助到各位小伙伴们。 1、 《臞翁诗集》是宋代敖陶孙撰诗文集,二卷。文章到此就分享结束,希望能帮助到大家。...

臣本布衣(不求闻达于诸侯)

臣本布衣(不求闻达于诸侯)

大家好,今天猫猫小编来讲讲一篇关于臣,关于臣部分内容简述的文章,那么现在就为大家来简单介绍下,希望能帮助到各位小伙伴们。 1、 臣: 夏代既指奴隶,也指管理王的家事的内臣。商周既指奴隶,也以臣为官称。战国以后用作官吏和百姓的统称。文章到此就分享结束,希望能帮助到大家。...

臦是什么意思(自由职业是什么意思)

臦是什么意思(自由职业是什么意思)

大家好,今天蜜蜜小编来讲讲一篇关于臦,关于臦部分内容简述的文章,那么现在就为大家来简单介绍下,希望能帮助到各位小伙伴们。 1、 臦,中国汉字,读音guàng。左右结构,意思是违背。出自《广韵》——居况切,去漾,宕合三去阳见。一般用于人名。文章到此就分享结束,希望能帮助到大家。...